Introduction to Stata J

Christopher F Baum

Faculty Micro Resource Center
Boston College

August 2009

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 1/132

Strengths of Stata What is Stata?

What is Stata? Stata is a full-featured statistical programming
language for Windows, Macintosh, Unix and Linux. It can be
considered a “stat package,” like SAS, SPSS, RATS, or eViews. The
number of variables is limited to 2,047 in standard Stata/IC, but can be
much larger in Stata/SE or Stata/MP. The number of observations is
limited only by memory.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 2/132

Strengths of Stata What is Stata?

What is Stata? Stata is a full-featured statistical programming
language for Windows, Macintosh, Unix and Linux. It can be
considered a “stat package,” like SAS, SPSS, RATS, or eViews. The
number of variables is limited to 2,047 in standard Stata/IC, but can be
much larger in Stata/SE or Stata/MP. The number of observations is
limited only by memory.

Stata has traditionally been a command-line-driven package that
operates in a graphical (windowed) environment. Stata version 11
(released July 2009) contains a graphical user interface (GUI) for
command entry. Stata may also be used in a command-line
environment on a shared system (e.g., Unix) if you do not have a
graphical interface to that system.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 2/132

Strengths of Stata Portability

Stata is eminently portable, and its developers are committed to
cross-platform compatibility. Stata runs the same way on Windows,
Macintosh, Unix, and Linux systems. The only platform-specific
aspects of using Stata are those related to native operating system
commands: e.g. is that file

C:\Stata\StataData\myfile.dta
or
/users/baum/statadata/myfile.dta

And—perhaps unique among statistical packages—Stata’s binary data
files may be freely copied from one platform to any other, or even
accessed over the Internet from any machine that runs Stata.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 3/132

Strengths of Stata Data Manipulation

Stata is advertised as having three major strengths:
@ data manipulation

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 4/132

Strengths of Stata Data Manipulation

Stata is advertised as having three major strengths:
@ data manipulation
@ statistics

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 4/132

Strengths of Stata Data Manipulation

Stata is advertised as having three major strengths:
@ data manipulation
@ statistics
@ graphics

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 4/132

Strengths of Stata Data Manipulation

Stata is advertised as having three major strengths:
@ data manipulation
@ statistics
@ graphics

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 4/132

Strengths of Stata Data Manipulation

Stata is advertised as having three major strengths:
@ data manipulation
@ statistics
@ graphics

Stata is an excellent tool for data manipulation: moving data from
external sources into the program, cleaning it up, generating new
variables, generating summary data sets, merging data sets and
checking for merge errors, collapsing cross—section time-series data
on either of its dimensions, reshaping data sets from “long” to “wide”,
and so on. In this context, Stata is an excellent program for answering
ad hoc questions about any aspect of the data.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 4/132

Strengths of Stata Statistics

In terms of statistics, Stata provides all of the standard univariate,
bivariate and multivariate statistical tools, from descriptive statistics
and t-tests through one-, two- and N-way ANOVA, regression, principal
components, and the like. Stata’s regression capabilities are
full-featured, including regression diagnostics, prediction, robust
estimation of standard errors, instrumental variables and two-stage
least squares, seemingly unrelated regressions, vector
autoregressions and error correction models, etc. It has a very
powerful set of techniques for the analysis of limited dependent
variables: logit, probit, ordered logit and probit, multinomial logit, and
the like.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 5/132

Strengths of Stata Statistics

Stata’s breadth and depth really shines in terms of its specialized
statistical capabilities. These include environments for time-series
econometrics (ARCH, ARIMA, VAR, VEC), model simulation and
bootstrapping, maximum likelihood estimation, and nonlinear least
squares. Families of commands provide the leading techniques utilized
in each of several categories:

@ “xt” commands for cross-section/time-series or panel
(longitudinal) data

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 6/132

Strengths of Stata Statistics

Stata’s breadth and depth really shines in terms of its specialized
statistical capabilities. These include environments for time-series
econometrics (ARCH, ARIMA, VAR, VEC), model simulation and
bootstrapping, maximum likelihood estimation, and nonlinear least
squares. Families of commands provide the leading techniques utilized
in each of several categories:
@ “xt” commands for cross-section/time-series or panel
(longitudinal) data
@ “svy” commands for the handling of survey data with complex
sampling designs

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 6/132

Strengths of Stata Statistics

Stata’s breadth and depth really shines in terms of its specialized
statistical capabilities. These include environments for time-series
econometrics (ARCH, ARIMA, VAR, VEC), model simulation and
bootstrapping, maximum likelihood estimation, and nonlinear least
squares. Families of commands provide the leading techniques utilized
in each of several categories:
@ “xt” commands for cross-section/time-series or panel
(longitudinal) data
@ “svy” commands for the handling of survey data with complex
sampling designs
@ “st” commands for the handling of survival-time data with duration
models

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 6/132

Strengths of Stata Graphics

Stata graphics are excellent tools for exploratory data analysis, and
can produce high-quality 2-D publication-quality graphics in several
dozen different forms. Every aspect of graphics may be programmed
and customized, and new graph types and graph “schemes” are being
continuously developed. The programmability of graphics implies that
a number of similar graphs may be generated without any “pointing
and clicking” to alter aspects of the graphs. Stata does not have 3-D
graphics capabilities, but those are under development in the new
graphics system.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 7/132

Strengths of Stata Availability, Cost, and Support

For members of the Boston College community, Stata is available
through ITS’ applications server, http://apps.bc.edu. After
downloading client software from this site, you may connect to the apps
server from any BC-activated computer and run Stata in a window on
your computer. It is actually running the Windows version of Stata
10.1, but the interface and commands is almost identical to Stata for
Mac OS X or Stata for Linux. Up to 50 users may access Stata on the
apps server simultaneously. Results from your analysis may be stored
on MyFiles, as the m: disk is automatically mapped to your account on
MyFiles. If you are working from off campus, you must use set up VPN
on your computer; see http://www.bc.edu/help for details.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 8/132

Strengths of Stata Availability, Cost, and Support

If you would like your own copy of Stata, it is quite inexpensive. The
vendor’s GradPlan program makes the full version of Stata version 10
software available to BC faculty and students for $98.00 (one-year
license for students) or $179.00 (perpetual license for faculty). As a
first with Stata 11, the entire documentation set is installed in PDF
format when you install Stata, and hyperlinked to the on-line help for
each command and feature.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 9/132

Strengths of Stata Availability, Cost, and Support

If you would like your own copy of Stata, it is quite inexpensive. The
vendor’s GradPlan program makes the full version of Stata version 10
software available to BC faculty and students for $98.00 (one-year
license for students) or $179.00 (perpetual license for faculty). As a
first with Stata 11, the entire documentation set is installed in PDF
format when you install Stata, and hyperlinked to the on-line help for
each command and feature.

The “Small Stata” version is available to students for $49.00 for a
one-year license. It contains all of Stata’s commands, but can only
handle a limited number of observations and variables (thus not
recommended for Ph.D. students or Senior Honors Thesis students).
GradPlan orders are made direct to Stata, with delivery from
on-campus inventory.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 9/132

Strengths of Stata Availability, Cost, and Support

Stata is very well supported by telephone and email technical support,
as well as the more informal support provided by other users on
Statalist, the Stata listserv. The manuals are useful—particularly the
User’s Guide—but full details of the command syntax are available
online, and in hypertext form in the GUI environment, with hyperlinks to
the appropriate pages of the full documentation set of over a dozen
manuals. The command findit keyword can also be used to locate
Stata materials, including descriptions of built-in commands, Stata
FAQs, and hundreds of user-written routines.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 10/132

Strengths of Stata Update Facility

One of Stata’s great strengths is that it can be updated over the
Internet. Stata is actually a web browser, so it may contact Stata’s web
server and enquire whether there are more recent versions of either
Stata’s executable (the kernel) or the ado-files. The kernel is updated
relatively infrequently—once a month at most—but the ado-files may
be modified every ten days or so. This enables Stata’s developers to
distribute bug fixes, enhancements to existing commands, and even
entirely new commands during the lifetime of a given release. Updates
during the life of the version you own are free. You need only have a
licensed copy of Stata and access to the Internet (which may be by
proxy server) to check for and, if desired, download the updates.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 11/132

Working with the command line

But why should | type commands?

But before we discuss the specifics to back up these claims, let’s
consider a meta-issue: why would you want to learn how to use a
command-line-driven package? Isn’t that ever so 20th century?

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 12/132

But why should | type commands?

But before we discuss the specifics to back up these claims, let’s
consider a meta-issue: why would you want to learn how to use a
command-line-driven package? Isn’t that ever so 20th century?

Stata may be used in an interactive mode, and those learning the
package may wish to make use of the menu system. But when you
execute a command from a pull-down menu, it records the command
that you could have typed in the Review window, and thus you may
learn that with experience you could type that command (or modify it
and resubmit it) more quickly than by use of the menus.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 12/132

But why should | type commands?

But before we discuss the specifics to back up these claims, let’s
consider a meta-issue: why would you want to learn how to use a
command-line-driven package? Isn’t that ever so 20th century?

Stata may be used in an interactive mode, and those learning the
package may wish to make use of the menu system. But when you
execute a command from a pull-down menu, it records the command
that you could have typed in the Review window, and thus you may
learn that with experience you could type that command (or modify it
and resubmit it) more quickly than by use of the menus.

Let us consider a couple of reasons why a command-line-driven
package makes for an effective and efficient research strategy.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 12/132

Reproducibility

First, the important issue of reproducibility. If you are conducting
scientific research, you must be able to reproduce your results. Ideally,
anyone with your programs and data should be able to do so without
your assistance. If you cannot produce such reproducible research
findings, it can be argued that you are not following the scientific
method, nor is your work conforming to ethical standards of research.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 13/132

Reproducibility

First, the important issue of reproducibility. If you are conducting
scientific research, you must be able to reproduce your results. Ideally,
anyone with your programs and data should be able to do so without
your assistance. If you cannot produce such reproducible research
findings, it can be argued that you are not following the scientific
method, nor is your work conforming to ethical standards of research.

A thorough discussion of this issue is covered in the webpage,
http://fmwww.bc.edu/GStat/docs/pointclick.html.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 13/132

Working with the command line Advantage: Reproducibility

In a computer program where all actions are point and click, such as a
spreadsheet, who can say how you arrived at a certain set of results?
Unless every step of your transformations of the data can be retraced,
how can you find exactly how the sample you are employing differs
from the raw data? A command-driven program is capable of this level
of reproducibility, we should all instill this level of rigor in our research
practices.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 14 /132

Working with the command line Advantage: Reproducibility

In a computer program where all actions are point and click, such as a
spreadsheet, who can say how you arrived at a certain set of results?
Unless every step of your transformations of the data can be retraced,
how can you find exactly how the sample you are employing differs
from the raw data? A command-driven program is capable of this level
of reproducibility, we should all instill this level of rigor in our research
practices.

Reproducibility also makes it very easy to perform an alternate
analysis of a particular model. What would happen if we added this
interaction, or introduced this additional variable, or decided to handle
zero values as missing? Even if many steps have been taken since the
basic model was specified, it is easy to go back and produce a
variation on the analysis if all the work is represented by a series of
programs.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 14/132

Working with the command line Advantage: Reproducibility

Stata makes this reproducibility very easy through a log facility, the
ability to generate a command log (containing only the commands you
have entered: see help cmdlog), and a “do-file editor” which allows
you to easily enter, execute and save “do-files”: sequences of
commands, or program fragments. There is also an elaborate
hypertext-based help browser, providing complete access to
commands’ descriptions and examples of syntax, with links to the
appropriate pages of the PDF manuals. Each of these components
appears in a separate window on the screen in the GUI version of
Stata.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 15/132

Advantage: Extensibility
Extensibility

Another clear advantage of the command-line driven environment is its
interaction with the continual expansion of Stata’s capabilities. A

command, to Stata, is a verb instructing the program to perform some
action.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 16/132

Advantage: Extensibility
Extensibility

Another clear advantage of the command-line driven environment is its
interaction with the continual expansion of Stata’s capabilities. A
command, to Stata, is a verb instructing the program to perform some
action.

Commands may be “built in” commands—those elements so
frequently used that they have been coded into the “Stata kernel.” A
relatively small fraction of the total number of official Stata commands
are built in, but they are used very heavily.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 16/132

Working with the command line Advantage: Extensibility

The vast majority of Stata commands are written in Stata’s own
programming language—the “ado-file” language. If a command is not
built in to the Stata kernel, Stata searches for it along the “adopath”.
Like the PATH in Unix, Linux or DOS, the adopath indicates the
several directories in which an ado-file might be located. This implies
that the “official” Stata commands are not limited to those coded into
the kernel.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 17/132

Working with the command line Advantage: Extensibility

The vast majority of Stata commands are written in Stata’s own
programming language—the “ado-file” language. If a command is not
built in to the Stata kernel, Stata searches for it along the “adopath”.
Like the PATH in Unix, Linux or DOS, the adopath indicates the
several directories in which an ado-file might be located. This implies
that the “official” Stata commands are not limited to those coded into
the kernel.

If Stata’s developers tomorrow wrote a command named
“concatenate”, they would make two files available on their web site:
concatenate.ado (the ado-file code) and concatenate.sthlp
(the associated help file). Both are straight ASCII text. These files
should be produced in a text editor, not a word processing program.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 17/132

Working with the command line Stata Journal and SSC Archive

The importance of this program design goes far beyond the limits of
official Stata. Since the adopath includes both Stata directories and
other directories on your hard disk (or on a server’s filesystem), you
may acquire new Stata commands from a number of web sites. The
Stata Journal (SJ), a quarterly refereed journal, is the primary method
for distributing user contributions. Between 1991 and 2001, the Stata
Technical Bulletin played this role, and a complete set of issues of the
STB are available on line at http://ideas.repec.orgq.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 18/132

Working with the command line Stata Journal and SSC Archive

The importance of this program design goes far beyond the limits of
official Stata. Since the adopath includes both Stata directories and
other directories on your hard disk (or on a server’s filesystem), you
may acquire new Stata commands from a number of web sites. The
Stata Journal (SJ), a quarterly refereed journal, is the primary method
for distributing user contributions. Between 1991 and 2001, the Stata
Technical Bulletin played this role, and a complete set of issues of the
STB are available on line at http://ideas.repec.orgq.

The SJ is a subscription publication (available at O’Neill Library: older
issues online at IDEAS), but the ado- and sthip-files may be freely
downloaded from Stata’s web site. The Stata command help
accesses help on all installed commands; the Stata command findit
will locate commands that have been documented in the STB and the
SJ, and with one click you may install them in your version of Stata.
Help for these commands will then be available in your own Stata.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 18/132

Stata Journal and SSC Archive
User extensibility: the SSC archive

But this is only the beginning. Stata users worldwide participate in the
Statal.ist listserv, and when a user has written and documented a new
general-purpose command to extend Stata functionality, they
announce it on the stataList listserv (to which you may freely
subscribe: see Stata’s web site). Since September 1997, all items
posted to stataList (over 1,000) have been placed in the Boston
College Statistical Software Components (SSC) Archive in RePEc,
available from IDEAS (http://ideas.repec.org) and EconPapers
(http://econpapers.repec.org).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 19/132

Working with the command line Stata Journal and SSC Archive

Any component in the SSC archive may be readily inspected with a
web browser, using IDEAS’ or EconPapers’ search functions, and if
desired you may install it with one command from the archive from
within Stata. For instance, if you know there is a module in the archive
named “ivreset,” you could use ssc install ivreset toinstallit.
Anything in the archive can be accessed via Stata’s ssc command:
thus ssc describe ivreset will locate this module, and make it
possible to install it with one click.

Windows users should not attempt to download the materials from a
web browser; it won’t work.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 20/132

Working with the command line Stata Journal and SSC Archive

The command ssc new lists, in the Stata Viewer, all SSC packages
that have been added or modified in the last month. You may click on
their names for full details. The command ssc hot reports on the
most popular packages on the SSC Archive.

The Stata command adoupdate checks to see whether all packages
you have downloaded and installed from the SSC archive, the Stata
Journal, or other user-maintained net from. .. sites are up to date.
adoupdate alone will provide a list of packages that have been
updated. You may then use adoupdate, update to refresh your
copies of those packages, or specify which packages are to be
updated.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 21/132

Working with the command line Stata Journal and SSC Archive

The importance of all this is that Stata is infinitely extensible. Any
ado-file on your adopath is a full-fledged Stata command. Stata’s
capabilities thus extend far beyond the official, supported features
described in the Stata manual to a vast array of additional tools.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 22/132

Working with the command line Stata Journal and SSC Archive

The importance of all this is that Stata is infinitely extensible. Any
ado-file on your adopath is a full-fledged Stata command. Stata’s
capabilities thus extend far beyond the official, supported features
described in the Stata manual to a vast array of additional tools.

Since the current directory is on the adopath, if | create an ado-file
hello.ado:

program define hello
display "hello from Stata!"
end

exit

Stata will now respond to the command hello. It's that easy.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 22/132

Working with the command line Advantage: Transportability

Transportability

Stata binary files may be easily transformed into SPSS or SAS files
with the third-party application Stat/Transfer. Stat/Transfer is available
for Windows and Mac OS X systems as well as on various Unix
systems on campus. Personal copies of Stat/Transfer version 9 (which
handles Stata versions 6, 7, 8, 9, 10 and 11 datafiles) are available at
a discounted academic rate of $69.00 through the Stata GradPlan.

Stat/Transfer can also transfer SAS, SPSS and many other file formats
into Stata format, without loss of variable labels, value labels, and the
like. It can also be used to create a manageable subset of a very large
Stata file (such as those produced from survey data) by selecting only
the variables you need. It is a very useful tool.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 23/132

Command syntax

We now consider the form of Stata commands. One of Stata’s great
strengths, compared with many statistical packages, is that its
command syntax follows strict rules: in grammatical terms, there are
no irregular verbs. This implies that when you have learned the way a
few key commands work, you will be able to use many more without
extensive study of the manual or even on-line help. The search
command will allow you to find the command you need by entering one
or more keywords, even if you do not know the command’s name.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 24 /132

Command Syntax

The fundamental syntax of all Stata commands follows a template. Not
all elements of the template are used by all commands, and some
elements are only valid for certain commands. But where an element
appears, it will appear in the same place, following the same grammar.
Like Unix or Linux, Stata is case sensitive. Commands must be given
in lower case. For best results, keep all variable names in lower case
to avoid confusion.

Following the examples in the Getting Started with Stata... manual, we
will make use of auto.dta, a dataset of 74 automobiles’
characteristics.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 25/132

Command Syntax Command template

The general syntax of a Stata command is:
[prefix_cmd:] cmdname [varlist] [=exp]
[1f exp] [in range]

[weight] [using...] [,options]

where elements in square brackets are optional for some commands.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 26/132

Command Syntax Command template

The general syntax of a Stata command is:

[prefix_cmd:] cmdname [varlist] [=exp]
[1f exp] [in range]
[weight] [using...] [,options]

where elements in square brackets are optional for some commands.

In some cases, only the cmdname itself is required. describe without
arguments gives a description of the current contents of memory
(including the identifier and timestamp of the current dataset), while
summarize without arguments provides summary statistics for all
(numeric) variables. Both may be given with a varlist specifying the
variables to be considered.

What are the other elements?

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 26/132

The varlist
The varlist

varlistis a list of one or more variables on which the command is to
operate: the subject(s) of the verb. Stata works on the concept of a
single set of variables currently defined and contained in memory,
each of which has a name. As desc will show you, each variable has a
data type (various sorts of integers and reals, and string variables of a
specified maximum length). The varlist specifies which of the defined
variables are to be used in the command.

The order of variables in the dataset matters, since you can use
hyphenated lists to include all variables between first and last. (The
order and move commands can alter the order of variables.) You can
also use “wildcards” to refer to all variables with a certain prefix. If you
have variables pop60, pop70, pop80, pop90, you can refer to them in a
varlist as popx or pop?20.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 27 /132

The exp dlause
The exp clause

The exp clause is used in commands such as generate and
replace where an algebraic expression is used to produce a new (or
updated) variable. In algebraic expressions, the operators ==, &, | and
I 'are used as equal, AND, OR and NOT, respectively. The /\ operator
is used to denote exponentiation. The + operator is overloaded to
denote concatenation of character strings.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 28/132

Command Syntax The if and in clauses

The if and in clauses

Stata differs from several common programs in that Stata commands
will automatically apply to all observations currently defined. You need
not write explicit loops over the observations. You can, but it is usually
bad programming practice to do so. Of course you may want not to
refer to all observations, but to pick out those that satisfy some
criterion. This is the purpose of the if exp and in range clauses. For
instance, we might:

sort price
list make price in 1/5

to determine the five cheapest cars in auto.dta. The 1/5 is a numlist. in
this case, a list of observation numbers. ¢ is the last observation, thus
list make price in -5/¢ will list the five most expensive cars in auto.d

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 29/132

Command Syntax The if and in clauses

Even more commonly, you may employ the if exp clause. This restricts
the set of observations to those for which the “exp”, a Boolean
expression, evaluates to true. Stata’s missing value codes are greater
than the largest positive number, so that the last command would avoid
listing cars for which the price is missing.

list make price if foreign==
lists only foreign cars, and
list make price if price > 10000 & price <.

lists only expensive cars (in 1978 prices!) Note the double equal in the
exp. A single equal sign, as in the C language, is used for assignment;
double equal for comparison.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 30/132

The using clause
The using clause

Some commands access files: reading data from external files, or
writing to files. These commands contain a using clause, in which the
filename appears. If a file is being written, you must specify the
“replace” option to overwrite an existing file of that name.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 31/132

The using clause
The using clause

Some commands access files: reading data from external files, or
writing to files. These commands contain a using clause, in which the
filename appears. If a file is being written, you must specify the
“replace” option to overwrite an existing file of that name.

Stata’s own binary file format, the .dta file, is cross-platform
compatible, even between machines with different byte orderings
(low-endian and high-endian). A .dta file may be moved from one
computer to another using ftp (in binary transfer mode).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 31/132

Command Syntax The using clause

To bring the contents of an existing Stata file into memory, the
command:

use file [,clear]

is employed (c1lear will empty the current contents of memory). You
must make sufficient memory available to Stata to load the entire file,
since Stata’s speed is largely derived from holding the entire data set in
memory. Consult Getting Started... for details on adjusting the memory
allocation on your computer, since it differs by operating system.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 32/132

Command Syntax The using clause

Reading and writing binary (.dta) files is much faster than dealing with
text (ASCII) files (with the insheet or infile commands), and
permits variable labels, value labels, and other characteristics of the
file to be saved along with the file. To write a Stata binary file, the
command

save file [,replace]

is employed. The compress command can be used to economize on
the disk space (and memory) required to store variables.

Stata’s version 10 and 11 datasets cannot be read by version 8 or 9; to
create a compatible dataset, use saveold.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 33/132

Command Syntax Accessing data over the Web

The amazing thing about “use filename” is that it is by no means
limited to the files on your hard disk. Since Stata is a web browser,

webuse klein
or
use http://fmwww.bc.edu/ec-p/data/Wooldridge/crimel.dta

will read these datasets into Stata’s memory over the web.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 34/132

Command Syntax Accessing data over the Web

The type command can display any text file, whether on your hard
disk or over the Web; thus

type http://fmwww.bc.edu/ec-p/data/Wooldridge/crimel.des
will display the codebook for this file, and

copy http://fmwww.bc.edu/ec-p/data/Wooldridge/crimel.des crime.codebook

will make a copy of the codebook on your own hard disk.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 35/132

Command Syntax Accessing data over the Web

When you have used a dataset over the Web, you have loaded it into
memory in your desktop Stata. You cannot save it to the Web, but can
save the data to your own hard disk. The advantages of this feature for
instructional and collaborative research should be clear. Students may
be given a URL from which their assigned data are to be accessed; it
matters not whether they are using Stata for Windows, Macintosh,
Linux, or Unix.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 36/132

The options clause
The options clause

Many commands make use of options (such as clear on use, or
replace on save). All options are given following a single comma,
and may be given in any order. Options, like commands, may generally
be abbreviated (with the notable exception of replace).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 37/132

Command Syntax Prefix commands

Prefix commands

A number of Stata commands can be used as prefix commands,
preceding a Stata command and modifying its behavior. The most
commonly employed is the by prefix, which repeats a command over a
set of categories. The statsby: prefix repeats the command, but
collects statistics from each category. The rolling: prefix runs the
command on moving subsets of the data (usually time series).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 38/132

Command Syntax Prefix commands

Prefix commands

A number of Stata commands can be used as prefix commands,
preceding a Stata command and modifying its behavior. The most
commonly employed is the by prefix, which repeats a command over a
set of categories. The statsby: prefix repeats the command, but
collects statistics from each category. The rolling: prefix runs the
command on moving subsets of the data (usually time series).

Several other command prefixes: simulate:, which simulates a
statistical model; bootstrap:, allowing the computation of bootstrap
statistics from resampled data; and jackknife:, which runs a command
over jackknife subsets of the data. The svy: prefix can be used with
many statistical commands to allow for survey sample design. See my
separate slideshow on Monte Carlo Simulation in Stata.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 38/132

Command Syntax Prefix commands

The by prefix

You can often save time and effort by using the by prefix. When a
command is prefixed with a bylist, it is performed repeatedly for each
element of the variable or variables in that list, each of which must be
categorical. For instance,

by foreign: summ price

will provide descriptive statistics for both foreign and domestic cars. If
the data are not already sorted by the bylist variables, the prefix
bysort should be used. The option , total will add the overall
summary.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 39/132

Command Syntax Prefix commands

What about a classification with several levels, or a combination of
values?

bysort rep78: summ price

bysort rep78 foreign: summ price

This is a very handy tool, which often replaces explicit loops that must
be used in other programs to achieve the same end.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 40/132

Command Syntax Prefix commands

The by prefix should not be confused with the by option available on
some commands, which allows for specification of a grouping variable:
for instance

ttest price, by (foreign)

will run a t-test for the difference of sample means across domestic
and foreign cars.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 41/132

Command Syntax Prefix commands

The by prefix should not be confused with the by option available on
some commands, which allows for specification of a grouping variable:
for instance

ttest price, by (foreign)

will run a t-test for the difference of sample means across domestic
and foreign cars.

Another useful aspect of by is the way in which it modifies the
meanings of the observation number symbol. Usually _n refers to the
current observation number, which varies from 1 to _ N, the maximum
defined observation. Under a bylist, _n refers to the observation within
the bylist, and _N to the total number of observations for that category.
This is often useful in creating new variables.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 41/132

Command Syntax Prefix commands

For instance, if you have individual data with a family identifier, these
commands might be useful:

sort famid age
by famid: gen famsize = _N
by famid: gen birthorder = _N - _n +1

Here the famsize variable is set to N, the total number of records for
that family, while the birthorder variable is generated by sorting the
family members’ ages within each family.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 42/132

Missing values
Missing values

Missing value codes in Stata appear as the dot (.) in printed output
(and a string missing value code as well: “”, the null string). It takes on
the largest possible positive value, so in the presence of missing data
you do not want to say

generate hiprice = (price > 10000), but rather
generate hiprice = (price > 10000 & price <.)

which then generates a “dummy variable” for high-priced cars (for
which price data are complete, with prices “less than missing”).

As of version 8, Stata allows for multiple missing value codes (. a,
.b, .c, ..., .z)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 43/132

2y s
Display formats

Each variable may have its own default display format. This does not
alter the contents of the variable, but affects how it is displayed. For
instance, $9.2f would display a two-decimal-place real number. The
command

format varname %9.2f
will save that format as the default format of the variable, and
format date %tm

will format a Stata date variable into a monthly format (e.g., 1998m10).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 44 /132

Variable labels

Each variable may have its own variable label. The variable label is a
character string (maximum 80 characters) which describes the
variable, associated with the variable via

label variable varname "text"

Variable labels, where defined, will be used to identify the variable in
printed output, space permitting.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 45/132

Value labels
Value labels

Value labels associate numeric values with character strings. They
exist separately from variables, so that the same mapping of numerics
to their definitions can be defined once and applied to a set of
variables (e.g. 1=very satisfied...5=not satisfied may be applied to all
responses to questions about consumer satisfaction). Value labels are
saved in the dataset. For example:

label define sexlbl 0 male 1 female
label wvalues sex sexlbl

If value labels are defined, they will be displayed in printed output
instead of the numeric values.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 46 /132

Generating new variables

The command generate is used to produce new variables in the
dataset, whereas replace must be used to revise an existing variable
(and replace must be spelled out). The syntax just demonstrated is
often useful if you are trying to generate indicator variables, or

dummies, since it combines a generate and replace in a single
command.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 47 /132

Generating new variables

The command generate is used to produce new variables in the
dataset, whereas replace must be used to revise an existing variable
(and replace must be spelled out). The syntax just demonstrated is
often useful if you are trying to generate indicator variables, or
dummies, since it combines a generate and replace in a single
command.

A full set of functions are available for use in the generate command,
including the standard mathematical functions, recode functions, string
functions, date and time functions, and specialized functions (help
functions for details). Note that generate’s sum () function is a
running sum.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 47 /132

The egen command

Stata is not limited to using the set of defined functions. The egen
(extended generate) command makes use of functions written in the
Stata ado-file language, so that _gzap.ado would define the extended
generate function zap () . This would then be invoked as

egen newvar = zap (oldvar)

which would do whatever zap does on the contents of oldvar, creating
the new variable newvar.

A number of egen functions provide row-wise operations similar to
those available in a spreadsheet: row sum, row average, row standard
deviation, etc.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 48/132

Time series operators
Time series operators

TheDp., L.,andF. operators may be used under a timeseries
calendar (including in the context of panel data) to specify first
differences, lags, and leads, respectively. These operators understand
missing data, and numlists: e.g. L (1/4) . x is the first through fourth

lags of x, while 12D . x is the second lag of the first difference of the x
variable.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 49/132

Time series operators
Time series operators

TheDp., L.,andF. operators may be used under a timeseries
calendar (including in the context of panel data) to specify first
differences, lags, and leads, respectively. These operators understand
missing data, and numlists: e.g. L (1/4) . x is the first through fourth
lags of x, while 12D . x is the second lag of the first difference of the x
variable.

It is important to use the time series operators to refer to lagged or led
values, rather than referring to the observation number (e.g., _n-1).
The time series operators respect the time series calendar, and will not
mistakenly compute a lag or difference from a prior period if it is
missing. This is particularly important when working with panel data to
ensure that references to one individual do not reach back into the
prior individual’s data.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 49/132

Mata: Matrix programming language
Mata: Matrix programming language

As of version 9, Stata contains a full-fledged matrix programming
language, Mata, with all of the capabilities of MATLAB, Ox or GAUSS.
Mata can be used interactively, or Mata functions can be developed to
be called from Stata. A large library of mathematical and matrix
functions is provided in Mata, including equation solvers,
decompositions, eigensystem routines and probability density
functions. Mata functions can access Stata’s variables and can work
with virtual matrices (“views”) of a subset of the data in memory. Mata
also supports file input/output.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 50/132

Mata: Matrix programming language
Mata: Matrix programming language

As of version 9, Stata contains a full-fledged matrix programming
language, Mata, with all of the capabilities of MATLAB, Ox or GAUSS.
Mata can be used interactively, or Mata functions can be developed to
be called from Stata. A large library of mathematical and matrix
functions is provided in Mata, including equation solvers,
decompositions, eigensystem routines and probability density
functions. Mata functions can access Stata’s variables and can work
with virtual matrices (“views”) of a subset of the data in memory. Mata
also supports file input/output.

Mata code is automatically compiled into bytecode, like Java, and can
be stored in object form or included in-line in a Stata do-file or ado-file.
Mata code runs many times faster than the interpreted ado-file
language, providing significant speed enhancements to many
computationally burdensome tasks. See my separate slideshow
Mata in Stata.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 50/132

Estimation commands

All estimation commands share the same syntax. Multiple equation
estimation commands use a list of equations, rather than a varlist,
where equations are defined in parenthesized varlists. Most estimation
commands allow the use of various kinds of weights.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 51/132

Common syntax
Estimation commands

All estimation commands share the same syntax. Multiple equation
estimation commands use a list of equations, rather than a varlist,
where equations are defined in parenthesized varlists. Most estimation
commands allow the use of various kinds of weights.

Estimation commands display confidence intervals for the coefficients,
and tests of the most common hypotheses. More complex hypotheses
may be analyzed with the test and 1incom commands; for nonlinear
hypothesis, testnl and nlcom may be applied, making use of the
delta method.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 51/132

Common syntax
Estimation commands

All estimation commands share the same syntax. Multiple equation
estimation commands use a list of equations, rather than a varlist,
where equations are defined in parenthesized varlists. Most estimation
commands allow the use of various kinds of weights.

Estimation commands display confidence intervals for the coefficients,
and tests of the most common hypotheses. More complex hypotheses
may be analyzed with the test and 1incom commands; for nonlinear
hypothesis, testnl and nlcom may be applied, making use of the
delta method.

Robust (Huber/White) estimates of the covariance matrix are available
for almost all estimation commands by employing the robust optio

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 51/132

Estimation commands Post-estimation commands

Predicted values and residuals may be obtained after any estimation
command with the predict command. For nonlinear estimators,
predict will produce other statistics as well (e.g. the log of the odds
ratio from logistic regression). The mfx command may be used to
generate marginal effects, including elasticities and semi—elasticities,
for any estimation command.

52/132

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009

Estimation commands Post-estimation commands

Predicted values and residuals may be obtained after any estimation
command with the predict command. For nonlinear estimators,
predict will produce other statistics as well (e.g. the log of the odds
ratio from logistic regression). The mfx command may be used to
generate marginal effects, including elasticities and semi—elasticities,
for any estimation command.

All estimation commands “leave behind” results of estimation in the
e () array, where they may be inspected with ereturn 1ist. Any
item here, including scalars such as R? and RMSE, the coefficient
vector, and the estimated variance-covariance matrix, may be saved
for use in later calculations.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 52/132

Estimation commands Storing and retrieving estimates

The estimates suite of commands allow you to store the results of a
particular estimation for later use in a Stata session. For instance, after
the commands

regress price mpg length turn

estimates store modell

regress price weight length displacement
estimates store model2

regress price weight length gear_ratio foreign
estimates store model3

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 53/132

Estimation commands Storing and retrieving estimates

the command
estimates table modell model2 model3

will produce a nicely-formatted table of results. Options on
estimates table allow you to control precision, whether standard
errors or t-values are given, significance stars, summary statistics, etc.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 54/132

Estimation commands Storing and retrieving estimates

the command
estimates table modell model2 model3

will produce a nicely-formatted table of results. Options on
estimates table allow you to control precision, whether standard
errors or t-values are given, significance stars, summary statistics, etc.

For example:

estimates table modell model2 model3, b (%10.3f)
se(%7.2f) stats(r2 rmse N) title(Some models of auto
price)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 54/132

Estimation commands Publication-quality tables

Although estimates table can produce a summary table quite
useful for evaluating a number of specifications, we often want to
produce a publication-quality table for inclusion in a word processing
document. Ben Jann’s estout command processes stored
estimates and provides a great deal of flexibility in generating such a
table.

Programs in the estout suite can produce tab-delimited tables for MS
Word, HTML tables for the web, and—my favorite—IATEX tables for
professional papers. In the IATEX output format, estout can generate
Greek letters, sub- and superscripts, and the like. estout is available
from SSC, with extensive on-line help, and was described in the Stata
Journal, 5(3), 2005 and 7(2), 2007. It has its own website at
http://repec.org/bocode/e/estout.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 55/132

Estimation commands Publication-quality tables

From the example above, rather than using estimates save and
estimates table we use Jann’s eststo (store) and esttab
(table) commands:

eststo clear

eststo: reg price mpg length turn

eststo: reg price weight length displacement
eststo: reg price weight length gear_ratio foreign
esttab using autol.tex, stats(r2 bic N) ///

subst (r2 \$R"2$) title (Models of auto price) ///
replace

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 56 /132

Estimation commands Publication-quality tables

Table 1: Models of auto price
1) ®3)

price price price
mpg -186.7*
(-2.13)
length 52.58 -97.63* -88.03*
(L67) (-247) (-2.65)
turn -199.0
(-1.44)
weight 4.613** 5.479™
(3.30) (5.24)
displacement 0.727
(0.10)
gear_ratio -669.1
(-0.72)
foreign 3837.9%*
(5.19)
_cons 8148.0 10440.6* 7041.5
(1.35) (2.39) (1.46)
R? 0251 0.348 0.552
bic 1387.2 1377.0 1353.5
N 74 74 74

t statistics in parentheses
* p<0.05, " p<0.01, " p<0.001

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 57/132

File handling

File handling

File extensions usually employed (but not required) include:

.ado automatic do—-file (defines a Stata command)

.dct data dictionary, optionally used with infile
.do do-file (user program)

.dta Stata binary dataset

.gph graphics output file (binary)

.log text log file

.smcl SMCL (markup) log file, for use with Viewer

.raw ASCII data file

.sthlp Stata help file

These extensions need not be given (except for . ado). If you use
other extensions, they must be explicitly specified.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 58/132

File handling Loading external data: insheet

Comma-separated (CSV) files or tab-delimited data files may be read
very easily with the insheet command—which despite its name does
not read spreadsheet files. If your file has variable names in the first
row that are valid for Stata, they will be automatically used (rather than
default variable names). You usually need not specify whether the data
are tab- or comma-delimited. Note that insheet cannot read
space-delimited data (or character strings with embedded spaces,
unless they are quoted).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 59/132

File handling Loading external data: insheet

If the file extension is . raw, you may just use
insheet using filename
to read it. If other file extensions are used, they must be given:

insheet using filename.csv
insheet using filename.txt

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 60/132

File handling Loading external data: infile

A free-format ASCII text file with space-, tab-, or comma-delimited data
may be read with the infile command. The missing-data indicator
(.) may be used to specify that values are missing.

The command must specify the variable names. Assuming auto.raw
contains numeric data,

infile price mpg displacement using auto

will read it. If a file contains a combination of string and numeric values
in a variable, it should be read as string, and encode used to convert it
to numeric with string value labels.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 61/132

File handling Loading external data: infile

If some of the data are string variables without embedded spaces, they
must be specified in the command:

infile str3 country price mpg displacement using auto2

would read a three-letter country of origin code, followed by the
numeric variables. The number of observations will be determined
from the available data.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 62/132

File handling Loading external data: infile

The infile command may also be used with fixed-format data,
including data containing undelimited string variables, by creating a
dictionary file which describes the format of each variable and
specifies where the data are to be found. The dictionary may also
specify that more than one record in the input file corresponds to a
single observation in the data set.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 63/132

File handling Loading external data: infile

The infile command may also be used with fixed-format data,
including data containing undelimited string variables, by creating a
dictionary file which describes the format of each variable and
specifies where the data are to be found. The dictionary may also
specify that more than one record in the input file corresponds to a
single observation in the data set.

If data fields are not delimited—for instance, if the sequence ‘102’
should actually be considered as three integer variables. A
dictionary must be used to define the variables’ locations.

The byvariable () option allows a variable-wise dataset to be read,
where one specifies the number of observations available for each
series.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 63/132

File handling Loading external data: infix

An alternative to infile with a dictionary is the infix command, which
presents a syntax similar to that used by SAS for the definition of
variables’ data types and locations in a fixed-format ASCII data set:
that is, a data file in which certain columns contain certain variables.
The _column () directive allow contents of a fixed-format data file to
be retrieved selectively.

infix may also be used for more complex record layouts where one
individual’s data are contained on several records in an ASCII file.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 64/132

File handling Loading external data: infix

A logical condition may be used on the infile or infix commands
to read only those records for which certain conditions are satisfied:
i.e.

infix using employee 1if sex=="M"
infile price mpg using auto in 1/20

where the latter will read only the first 20 observations from the
external file. This might be very useful when reading a large data set,
where one can check to see that the formats are being properly
specified on a subset of the file.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 65/132

File handling Loading external data: Stat/Transfer

If your data are already in the internal format of SAS, SPSS, Excel,
GAUSS, MATLAB, or a number of other packages, the best way to get
it into Stata is by using the third-party product Stat/Transfer.
Stat/Transfer will preserve variable labels, value labels, and other
aspects of the data, and can be used to convert a Stata binary file into
other packages’ formats. It can also produce subsets of the data
(selecting variables, cases or both) so as to generate an extract file
that is more manageable. This is particularly important when the
2,047-variable limit on standard Stata data sets is encountered.
Stat/Transfer is well documented, with on-line help available in both
Windows, Mac OS X and Unix versions, and an extensive manual.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 66/132

Combining data sets append

Combining data sets

In many empirical research projects, the raw data to be utilized are
stored in a number of separate files: separate “waves” of panel data,
timeseries data extracted from different databases, and the like. Stata
only permits a single data set to be accessed at one time. How, then,
do you work with multiple data sets? Several commands are available,
including append, merge, and joinby.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 67 /132

Combining data sets append

Combining data sets

In many empirical research projects, the raw data to be utilized are
stored in a number of separate files: separate “waves” of panel data,
timeseries data extracted from different databases, and the like. Stata
only permits a single data set to be accessed at one time. How, then,
do you work with multiple data sets? Several commands are available,
including append, merge, and joinby.

The append command combines two Stata-format data sets that
possess variables in common, adding observations to the existing
variables. The same variables need not be present in both files, as
long as a subset of the variables are common to the “master” and
“using” data sets. It is important to note that “PRICE" and “price” are
different variables, and one will not be appended to the other.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 67 /132

Combining data sets merge

We now describe the merge command. lts syntax has changed
considerably in Stata version 11. As you may not have access yet to
Stata version 11, | describe the version 10 syntax. To invoke the older
version of merge, use

version 10: merge

For details of the new version of merge, see help merge in version
11.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 68/132

Combining data sets merge

The merge command is very powerful. Like append, it works on a
“master” data set—the current contents of memory—and one or more
“using” data sets. One or more merge variables are specified, and both
master and using data sets must be sorted on those variables.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 69/132

Combining data sets merge

The merge command is very powerful. Like append, it works on a
“master” data set—the current contents of memory—and one or more
“using” data sets. One or more merge variables are specified, and both
master and using data sets must be sorted on those variables.

The distinction between “master” and “using” is important. When the
same variable is present in each of the files, Stata’s default behavior is
to hold the master data inviolate and discard the using dataset’s copy
of that variable. This may be modified by the update option, which
specifies that non-missing values in the using dataset should replace
missing values in the master, and update replace, which specifies
that non-missing values in the using dataset should take precedence.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 69/132

Combining data sets merge

A “one-to-one” merge specifies that each record in the using data set
is to be combined with one record in the master data set. This would
be appropriate if you acquired additional variables for the same
observations. A new variable, _merge, takes on integer values
indicating whether an observation appears in the master only, the
using only, or appears in both. This may be used to determine whether
the merge has been successful, or to remove those observations
which remain unmatched (e.g. merging a set of households from
different cities with a comprehensive list of ZIP codes; one would then
discard all the unused ZIP code records). The _merge variable must
be dropped before another merge is performed on this data set.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 70/132

Combining data sets merge

A “one-to-one” merge specifies that each record in the using data set
is to be combined with one record in the master data set. This would
be appropriate if you acquired additional variables for the same
observations. A new variable, _merge, takes on integer values
indicating whether an observation appears in the master only, the
using only, or appears in both. This may be used to determine whether
the merge has been successful, or to remove those observations
which remain unmatched (e.g. merging a set of households from
different cities with a comprehensive list of ZIP codes; one would then
discard all the unused ZIP code records). The _merge variable must
be dropped before another merge is performed on this data set.

The unique option should be used if you believe that both data sets
should have unique values of the merge key.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 70/132

Combining data sets Match merge

The merge command can also do a “match merge”, or “one-to-N"
merge, in which each record in the using data set is matched with a
number of records in the master data set. If a number of the
households lived in the same ZIP code, then the match would place
variables from the ZIP code file on the household records, repeating
where necessary. This is a very useful technique to combine
aggregate data with disaggregate data without dealing with the details.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 71/132

Combining data sets Match merge

The merge command can also do a “match merge”, or “one-to-N"
merge, in which each record in the using data set is matched with a
number of records in the master data set. If a number of the
households lived in the same ZIP code, then the match would place
variables from the ZIP code file on the household records, repeating
where necessary. This is a very useful technique to combine
aggregate data with disaggregate data without dealing with the details.

Although “one-to-N” and “N-to-one” merges are commonplace and
very useful, you probably never want to do a “N-to-N” merge, which will
yield seemingly random results. To ensure that one data set has
unique identifiers, specify the unigmaster or uniqusing options, or
use the isid command to ensure that a dataset has a unique
identifier.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 71/132

Writing external data outfile, outsheet and file

Writing external data

If you want to transfer data to another package, Stat/Transfer is very
useful. But if you just want to create an ASCII file from Stata, the
out £ile command may be used. It takes a varlist, and the if or in
clauses may be used to control the observations to be exported.
Applying sort prior to outfile will control the order of observations in
the external file. You may specify that the data are to be written in
comma-separated format.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 72/132

Writing external data outfile, outsheet and file

Writing external data

If you want to transfer data to another package, Stat/Transfer is very
useful. But if you just want to create an ASCII file from Stata, the
out £ile command may be used. It takes a varlist, and the if or in
clauses may be used to control the observations to be exported.
Applying sort prior to outfile will control the order of observations in
the external file. You may specify that the data are to be written in
comma-separated format.

The out sheet command can write a comma-delimited or
tab-delimited ASCII file, optionally placing the variable names in the
first row. Such a file can be easily read by a spreadsheet program
such as Excel. Note that out sheet does not write spreadsheet files.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 72/132

Writing external data outfile, outsheet and file

Writing external data

If you want to transfer data to another package, Stat/Transfer is very
useful. But if you just want to create an ASCII file from Stata, the
out £ile command may be used. It takes a varlist, and the if or in
clauses may be used to control the observations to be exported.
Applying sort prior to outfile will control the order of observations in
the external file. You may specify that the data are to be written in
comma-separated format.

The out sheet command can write a comma-delimited or
tab-delimited ASCII file, optionally placing the variable names in the
first row. Such a file can be easily read by a spreadsheet program
such as Excel. Note that out sheet does not write spreadsheet files.

For customized output, the £i1e command can write out information
(including scalars, matrices and macros, text strings, etc.) in any
ASCII or binary format of your choosing.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 72/132

Writing external data postfile and post

A very useful capability is provided by the postfile and post
commands, which permit a Stata data set to be created in the course
of a program. For instance, you may be simulating the distribution of a
statistic, fitting a model over separate samples, or bootstrapping
standard errors. Within the looping structure, you may post certain
numeric values to the post file. This will create a separate Stata
binary data set, which may then be opened in a later Stata run and
analysed. Note, however, that only numeric expressions may be
written to the post file, and the parens () given in the
documentation, surrounding each exp, are required.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 73/132

Reconfiguring data

Reconfiguring data

Data are often provided in a different orientation than that required for
statistical analysis. The most common example of this occurs with
panel, or longitudinal, data, in which each observation conceptually
has both cross-section (/) and time-series (f) subscripts. Often one will
want to work with a “pure” cross-section or “pure” time-series. If the
microdata themselves are the objects of analysis, this can be handled
with sorting and a loop structure. If you have data for N firms for T
periods per firm, and want to fit the same model to each firm, one
could use the statsby command, or if more complex processing of
each model’s results was required, a foreach block could be used. If
analysis of a cross-section was desired, a bysort would do the job.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 747132

Reconfiguring data collapse

But what if you want to use average values for each time period,
averaged over firms? The resulting dataset of T observations can be
easily created by the collapse command, which permits you to
generate a new data set comprised of summary statistics of specified
variables. More than one summary statistic can be generated per input
variable, so that both the number of firms per period and the average
return on assets could be generated. collapse can produce counts,
means, medians, percentiles, extrema, and standard deviations.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 75/132

Reconfiguring data reshape

Different models applied to longitudinal data require different
orientations of those data. For instance, seemingly unrelated
regressions (sureg) require the data to have T observations (“wide”),
with separate variables for each cross—sectional unit. Fixed—effects or
random-effects regression models xt reg, on the other hand, require
that the data be stacked or “vec”d in the “long” format. It is usually
much easier to generate transformations of the data in stacked format,
where a single variable is involved.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 76/132

Reconfiguring data reshape

Different models applied to longitudinal data require different
orientations of those data. For instance, seemingly unrelated
regressions (sureg) require the data to have T observations (“wide”),
with separate variables for each cross—sectional unit. Fixed—effects or
random-effects regression models xt reg, on the other hand, require
that the data be stacked or “vec”d in the “long” format. It is usually
much easier to generate transformations of the data in stacked format,
where a single variable is involved.

The reshape command allows you to transfer the data from the
former (“wide”) format to the latter (“long”) format or vice versa. ltis a
complicated command, because of the many variations on this
process one might encounter, but it is very powerful.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 76/132

Reconfiguring data reshape

As an example, a dataset from the World Bank, provided as a
spreadsheet, has rows labelled by both country (ccode) and variable
(vcode), and columns labelled by years. Two applications of reshape
were needed to transfer the data to the desired 1ong format, where
the observations have both country and year subscripts, and the
columns are variables:

reshape long d, i(ccode vcode) 7j(year)
reshape wide d, 1i(ccode year) j(vcode) string

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 771/132

Reconfiguring data reshape

As an example, a dataset from the World Bank, provided as a
spreadsheet, has rows labelled by both country (ccode) and variable
(vcode), and columns labelled by years. Two applications of reshape
were needed to transfer the data to the desired 1ong format, where
the observations have both country and year subscripts, and the
columns are variables:

reshape long d, i(ccode vcode) 7j(year)
reshape wide d, 1i(ccode year) j(vcode) string

The resulting data set is in the appropriate format for xt reg modelling.
If it were to be used in sureg—type models, a further reshape wide
could be applied to transform it into that format.

See Stata Tip 45, Baum and Cox, Stata Journal 7:2, 2007.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 77/132

Repeating commands foreach and forvalues

Repeating commands

One of Stata’s great strengths is the ability to perform repetitive tasks
without spelling out the details (e.g. the by prefix). However, the by
prefix can only execute a single command; so that while you may run a
regression for each country in your sample, you cannot also save the
residuals or predicted values for those country-specific regressions.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 78/132

Repeating commands foreach and forvalues

Repeating commands

One of Stata’s great strengths is the ability to perform repetitive tasks
without spelling out the details (e.g. the by prefix). However, the by
prefix can only execute a single command; so that while you may run a
regression for each country in your sample, you cannot also save the
residuals or predicted values for those country-specific regressions.

Stata provides two commands that allow construction of a true block
structure or loop: foreach and forvalues. These commands permit
a delimited block of commands to be repeated over elements of a
varlist or numlist. Indeed, the target of foreach may be any list of
names, and can be a list of new variables to be created. The
forvalues numlist may include an increment, so that it could for
instance count from 10 to 100 in steps of 10, or count down from 10 to
1.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 78/132

Repeating commands foreach and forvalues

This code fragment loops over a varlist, calculates (but does not
display) the descriptives of each variable, and then summarizes the
observations of that variable that exceed its mean. Note the use of
‘var’, in particular the backtick (‘) on the left of the word. This syntax is
mandatory when referring to the placeholder.

foreach var of varlist pri-rep tx {
quietly summarize ‘var’
summarize ‘var’ if ‘var’ > r (mean)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 79/132

Repeating commands foreach and forvalues

This code fragment loops over a varlist, calculates (but does not
display) the descriptives of each variable, and then summarizes the
observations of that variable that exceed its mean. Note the use of
‘var’, in particular the backtick (‘) on the left of the word. This syntax is
mandatory when referring to the placeholder.

foreach var of varlist pri-rep tx {
quietly summarize ‘var’

\

summarize ‘var’ if ‘var’ > r (mean)

Generally a forvalues or foreach loop is the best way to solve any
programming problem that involves repetition. It is usually much faster,
in the long run, to figure out how to place a problem in this context.
Nested loops may also be defined with these commands.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 79/132

Repeating commands while and if

A loop structure may also be explicitly defined by the while
command, which is akin to the “do while” construct in other
programming languages. A while structure often will make use of an
i f command—not to be confused with the if clause on other
commands—which will create conditional logic. The i £ command may
also use an else clause to express conditional logic.

For many purposes, it is more efficient (in terms of your time) to
employ foreach or forvalues, since those commands handle the
logic of repetition without explicit detail. Programs written with these
commands are easier to maintain and modify.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 80/132

Local macros, scalars and results

Local macros and scalars

In programming terms, local macros and scalars are the “variables”
of Stata programs (not to be confused with the variables of the data
set). The distinction: a local macro can contain a string, while a scalar
can contain a single number (at maximum precision). You should use
these constructs whenever possible to avoid creating variables with
constant values merely for the storage of those constants. This is
particularly important when working with large data sets.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 81/132

Local macros, scalars and results

Local macros and scalars

In programming terms, local macros and scalars are the “variables”
of Stata programs (not to be confused with the variables of the data
set). The distinction: a local macro can contain a string, while a scalar
can contain a single number (at maximum precision). You should use
these constructs whenever possible to avoid creating variables with
constant values merely for the storage of those constants. This is
particularly important when working with large data sets.

When you want to work with a scalar object—such as a counter in a
foreach or forvalues command—it will involve defining and
accessing a local macro. In addition, all Stata commands that compute
results or estimates generate one or more objects to hold those items,
which are scalars (numbers), local macros (strings) or matrices.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 81/132

Local macros, scalars and results

This behavior of Stata’s computational commands allows you to write a
do-file that makes use of these quantities. We saw one example of this
above. The command summarize generates a number of scalars,
such as r (N), the number of observations; r (mean), the mean;

r (Var), the variance; etc. The available items are shown by return
list for a “r-class” command. The contents of these scalars may be
used in expressions. In the example above, the mean of a variable was
used to govern a following summarize command:

quietly summarize price
summarize price if price > r (mean)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 82/132

Local macros, scalars and results

In this example, the scalar r (mean) may be used directly. But what if
you wanted to issue another command that generated results, which
would wipe out all of the r () returns? Then you use the 1ocal
statement to preserve the item in a macro of your choosing:

local mu r (mean)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 83/132

Local macros, scalars and results

In this example, the scalar r (mean) may be used directly. But what if
you wanted to issue another command that generated results, which
would wipe out all of the r () returns? Then you use the 1ocal
statement to preserve the item in a macro of your choosing:

local mu r (mean)

Later in the program, you could use

\ 14

regress mpg weight length if price > ‘mu

Note the use of the backtick (‘) on the left of the local macro. This
syntax is mandatory, as it makes the dereference clear: you are
referring to the value of the local macro mu rather than the contents of
the variable mu.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 83/132

Local macros, scalars and results return list, ereturn list

Returned results

Stata commands are either r-class commands like summarize, that
return results, or e-class commands, that return estimates. You may
examine the set of results from a r-class command with the command
return list. For an e-class command, use ereturn list. An
e—class command will return e () scalars, macros and matrices: for
instance, after regress, the local macro e (N) will contain the number
of observations, e (r2) the R? value, e (depvar) will contain the
name of the dependent variable, and so on.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 84/132

Local macros, scalars and results return list, ereturn list

Returned results

Stata commands are either r-class commands like summarize, that
return results, or e-class commands, that return estimates. You may
examine the set of results from a r-class command with the command
return list. For an e-class command, use ereturn list. An
e—class command will return e () scalars, macros and matrices: for
instance, after regress, the local macro e (N) will contain the number
of observations, e (r2) the R? value, e (depvar) will contain the
name of the dependent variable, and so on.

Commands may also return matrices. For instance, regress (like all
estimation commands) will return the matrix e (b), a row vector of
point estimates, and the matrix e (v) , the estimated
variance—covariance matrix of the estimated parameters.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 84/132

Local macros, scalars and results return list, ereturn list

Use display to examine the contents of a scalar or local macro. For
the latter, you must use the backtick and apostrophe to indicate that
you want to access the contents of the macro: contrast display

r (mean) With display "The mean is ° mu’ ". The contents of
matrices may be displayed with the matrix 1ist command.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 85/132

Local macros, scalars and results return list, ereturn list

Use display to examine the contents of a scalar or local macro. For
the latter, you must use the backtick and apostrophe to indicate that
you want to access the contents of the macro: contrast display

r (mean) With display "The mean is ° mu’ ". The contents of
matrices may be displayed with the matrix 1ist command.

Since items are accessible in local macros, it is very easy to write a
program that makes use of results in directing program flow. Local
macros can be created by the 1ocal statement, and used as counters
(e.g. in foreach).

For more information, see my separate slideshow Why should you
become a Stata programmer?

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 85/132

Some useful Stata commands

help : online help on a specific command

findit : online references on a keyword or topic

ssc : access routines from the SSC Archive

log : log output to an external file

tsset : define the time indicator for timeseries or panel data
compress : economize on space used by variables

pwd : print the working directory

cd : change the working directory

clear : clear memory

quietly : do not show the results of a command

update query : see if Stata is up to date

adoupdate : see if user-written commands are up to date
exit : exit the program (,clear if dataset is not saved)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 86/132

Data maripulation
Data manipulation commands

generate : create a new variable

replace : modify an existing variable

rename : rename variable

renvars : rename a set of variables

sort : change the sort order of the dataset

drop : drop certain variables and/or observations

keep : keep only certain variables and/or observations
append : combine datasets by stacking

merge : merge datasets (one-to-one or match merge)
encode : generate numeric variable from categorical variable
recode : recode categorical variable

destring : convert string variables to numeric

foreach : loop over elements of a list, performing a block of code
forvalues : loop over a numlist, performing a block of code
local : define or modify a local macro (scalar variable)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 87/132

Useful commands and Stata examples Data manipulation

describe : describe a data set or current contents of memory
use : load a Stata data set

save : write the contents of memory to a Stata data set
insheet : load a text file in tab- or comma-delimited format
infile : load a text file in space-delimited format or as defined in a
dictionary

outfile : write a text file in space- or comma-delimited format
outsheet : write a text file in tab- or comma-delimited format
contract : make a dataset of frequencies

collapse : make a dataset of summary statistics

tab : abbreviation for tabulate: 1- and 2-way tables

table : tables of summary statistics

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 88/132

Statistical commands

summarize : descriptive statistics

correlate : correlation matrices

ttest : perform 1-, 2-sample and paired t-tests
anova : 1-, 2-, n-way analysis of variance
regress : least squares regression

predict : generate fitted values, residuals, etc.
test : test linear hypotheses on parameters
lincom : linear combinations of parameters
cnsreg : regression with linear constraints
testnl : test nonlinear hypothesis on parameters
mfx : marginal effects (elasticities, etc.)
ivregress : instrumental variables regression
prais : regression with AR(1) errors

sureg : seemingly unrelated regressions
reg3 : three-stage least squares

greg : quantile regression
Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 89/132

Limited dependent variable estimation
Limited dependent variable estimation commands

logit, logistic : logit model, logistic regression

probit : binomial probit model

tobit : one- and two-limit Tobit model

cnsreg : Censored normal regression (generalized Tobit)
ologit, oprobit : ordered logit and probit models

mlogit : multinomial logit model

poisson : Poisson regression

heckman : selection model

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 90/132

Time series estimation commands

arima : Box-Jenkins models, regressions with ARMA errors
arch : models of autoregressive conditional heteroskedasticity
dfgls : unit root tests

corrgram : correlogram estimation

var : vector autoregressions (basic and structural)

irf : impulse response functions, variance decompositions
vec : vector error—correction models (cointegration)

rolling: prefix permitting rolling or recursive estimation over subsets

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 91/132

Panel data estimation commands

xtreg.fe : fixed effects estimator

xtreg,re : random effects estimator

xtgls : panel-data models using generalized least squares

xtivreg : instrumental variables panel data estimator

xtlogit : panel-data logit models

xtprobit : panel-data probit models

xtpois : panel-data Poisson regression

xtgee : panel-data models using generalized estimating equations
xtmixed : linear mixed (multi-level) models

xtabond : Arellano-Bond dynamic panel data estimator

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 92/132

Nonlinear estimation commands

The n1 command may be used to estimate a nonlinear model, while
ml supports maximum likelihood estimation with a user-specified
likelihood function. See my separate slideshow on Maximum
Likelihood Estimation and Nonlinear Least Squares in Stata.

Mata now contains a full-featured set of optimization commands as
optimize (). These commands are now the preferred method to
implement optimization in Stata.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 93/132

Graphics commands:

twoway produces a variety of graphs, depending on options listed
histogram rep78 histogram of this categorical variable

twoway scatter price mpga Y vs X scatterplot

twoway line price mpga Y vs Xline plot

tsline GDP a Y vs time time-series plot

twoway area price mpgan Y vs X area plot

twoway rline price mpg a Y vs X range plot (hi-lo) with lines
The command twoway may be omitted in most cases.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 94/132

Useful commands and Stata examples Graphics

The flexibility of Stata graphics allows any of these plot types (including
many more that are available) to be easily combined on the same
graph. For instance, using the auto.dta dataset,

twoway (scatter price mpg) (1lfit price mpqg)
will generate a scatterplot, overlaid with the linear regression fit, and
twoway (lfitci price mpg) (scatter price mpg)

will do the same with the confidence interval displayed.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 95/132

Useful commands and Stata examples Graphics

o
S []
o 4
N °
— ° o

]

° []

o °
o
o 4
o
—
o
o
S
n
[@ 3

T T T T
30 40
Mileage (mpg)

|' Price —— Fitted values

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 96/132

Useful commands and Stata examples Graphics

o
o
o
LN []
=
A |
° []
o []
o
o
o
o
o
o
wn
o 4

30
Mileage (mpg)

95% CI —— Fitted values
Price

Christopher F Baum (Boston College FMRC)

Introduction to Stata

40

August 2009

97 /132

Useful commands and Stata examples Graphics

A nonparametric fit of a bivariate relationship can be readily overlaid
on a graph via

twoway (lowess price mpg) (scatter price mpg)

Twoway graphs may also represent mathematical functions, without
explicit data:

twoway (function y=log(x)*sin(x)) (function y=x*cos (x))

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 98/132

Useful commands and Stata examples Graphics

10000 15000
1 1

5000

T T
30 40
Mileage (mpg)

lowess price mpg @ Price

Christopher F Baum (Boston College FMRC)

Introduction to Stata

August 2009

99/132

Useful commands and Stata examples Graphics

O

T
0 2 4 6 8 1
X
y y
y
Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 100/ 132

Useful commands and Stata examples Graphics

Graphs may also be readily combined into a single graphic for
presentation. For instance,

twoway (scatter price mpg) (lfit price mpg), name (autol)
gen gpm = 1/mpg

label var gpm "Gallons per mile"

twoway (lowess price gpm) (scatter price gpm),

name (auto2)

graph combine autol auto2, saving(myauto, replace) ///
ti("Some exploratory aspects of auto.dta")

where the “///” is a continuation of the line.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 101/132

Useful commands and Stata examples Graphics

Some exploratory aspects of auto.dta

10,000 15,000
1 1
10000 15000
L L

5,000
5000

T T T T T T T T
10 20 30 40 .02 .04 .06 .08
Mileage (mpg) Gallons per mile

" Price Fitted values ‘ ‘ lowess price gpm @ Price

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 102/132

Instructional data sets

A list of over 100 datasets suitable for instructional use is available on
the economics web pages as

http://fmwww.bc.edu/ec-p/data/ecfindata.html#teach

Sample Stata do-files

Consider the data Zvi Griliches used in his 1976 article on the wages
of young men (Journal of Political Economy, 84, S69-S85). These are
cross-sectional data on 758 individuals collected over several survey

years.

do http://fmwww.bc.edu/ec-p/software/stata/stataintrol

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 103/132

Useful commands and Stata examples Cross-section example

* Statalntro: cross—-section example
log using introl, replace

use http://fmwww.bc.edu/ec-p/data/hayashi/griliches76
describe

summarize

label define ur 0 rural 1 urban
label values smsa ur

tab smsa

tab mrt smsa, chi2

ttest med, by (smsa)

anova lw mrt smsa

anova 1lw mrt smsa mrtxsmsa

anova, regress

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 104 /132

Useful commands and Stata examples Cross-section example

regress lw tenure kww smsa

predict lweps,resid

scatter lweps kww

bysort year: regress lw tenure kww smsa

graph matrix ig kww age s expr lw, msize (tiny)
gen medrural = medx (smsa==0)

gen medurban = medx (smsa==1)

regress lw tenure kww medurban medrural

test medurban=medrural

log close

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 105/132

Useful commands and Stata examples Cross-section example

iq
score
60
score on
40 knowledge
in world of
201 work test
204
] completed
15 years of
104
experience,
years
74
64 log
wage
54
T T T T i T T
50 100 150 15 20 25 30

sTara™

Introduction to Stata August 2009 106 /132

Useful commands and Stata examples Time series example

The following example reads some daily Dow-Jones Averages data,
graphs daily returns, then performs Dickey-Fuller tests for unit roots on
the DJIA, its log, and its returns (log price relatives), and on their first
differences. AR(3) models are then estimated on the series, and the
Box—Pierce portmanteau test is then performed on the residuals.

In this example, we make use of “local macros” (with values ‘v’),
which enable us to perform the same operations on several named
variables without having to write out the commands for each variable.
This facility may be used with varlists of any length, and makes it
very easy to generate parallel analyses, produce graphs, etc. for an
arbitrary set of variables or time periods.

do http://fmwww.bc.edu/ec-p/software/stata/stataintro?

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 107 /132

Useful commands and Stata examples Time series example

* Statalntro: time-series example
log using intro2, replace
use http://fmwww.bc.edu/ec-p/data/micro/ddjia.dta
desc
summ
tsset
tsline ret
foreach v of varlist djia ldjia ret {
dfgls ‘v’, maxlag(l2)
dfgls D.'v', maxlag(l2)
regress ‘v’ L(1/3).‘w’, robust
predict eps_‘v’,resid
wntestqg eps_ ‘v’
}

log close

A

v

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 108/132

Useful commands and Stata examples Time series example

Dow Jones Industrial Average, 4Jan1982-31Dec1999

10

Returns on daily DJIA
-10

-20

-30

T T T T T
1000 2000 3000 4000 5000
day

o -

sTara™

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 109/132

Examples of Stata programming Writing a do-file

Examples of Stata programming

Let us form a “rolling forecast” of volatility from a moving-window
regression (we had not learned that Baum’s ro11reg command (or
Stata’s rol1ing: prefix) could do this job for us). Assume that we
have 120 time-series observations which have been tsset:

gen volfc=.

local win 12

forv 1i=13/120 {
local first = ‘i’'-‘win’+4
quietly regress y L(1/4).y in ‘first’/ ‘i’
quietly replace volfc = e(rmse) in ‘i’ / ‘i’

This program will generate the series volfc as the RMS error of
an AR(4) model fit to a window of 12 observations for the y series

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 110/132

Examples of Stata programming Writing a do-file

The use of local macros and the appropriate loop constructs make it
possible to write a Stata program that is fairly general, and requires
little modification to be reused on different series, or with different
parameters. This makes your work with Stata very productive, since
much of the code is reusable and adaptable to similar tasks. Let us
consider how this approach might be pursued in the context of the
volatility forecast example.

[For more information, see my separate slideshow Why should you
become a Stata programmer? and my book An Introduction fo Stata
Programming, available in O’Neill Library.]

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 111/132

Examples of Stata programming Writing an ado-file

We show here a complete Stata program, volfc, which is stored in
the file volfc.ado on the adopath. Since this is a
personally-authored program, it should be placed in the personal
subdirectory of the ado directory (not the Stata directory’s ado
subdirectory!) For more information, see adopath.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 112/132

Examples of Stata programming Writing an ado-file

We show here a complete Stata program, volfc, which is stored in
the file volfc.ado on the adopath. Since this is a
personally-authored program, it should be placed in the personal
subdirectory of the ado directory (not the Stata directory’s ado
subdirectory!) For more information, see adopath.

This program makes use of Stata’s syntax parsing capabilities to allow
this user-written command to emulate all Stata commands’ syntax. It
does not make use of many of the features that might be useful in such
a command: handling if and in clauses, providing more specific error
messages for inappropriate option values, and so on.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 112/132

Examples of Stata programming Writing an ado-file

The program generalizes the do-file shown above by allowing the
moving—window volatility estimate to be generated from a specified
variable, and placed in a new variable specified in the vol () option.
The window width (option win ()) and AR length (option AR ()) take on
default values 12 and 4, but may be overridden by the user. The
program automatically calculates the first and last observations to be
used in the loop from the data and specified options. It could readily be
generalized to use a different volatility measure from the rolling
regression (e.g. mean absolute error).

To be complete, we should provide a help file for vol fc in the file
volfc.sthlp. The help file would specify the syntax of the
command, explain its purpose, define each of the options, and provide
any references to other Stata commands that might be useful.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 113/132

Examples of Stata programming Writing an ado-file

program define volfc, rclass
version 10.0
syntax wvarname (numeric) ,Vol(string) [Win(integer 12)
quietly tsset
if ‘win’ < ‘ar’ {
di "You must have a longer window than AR length!"
error 198

}
quietly gen ‘vol’=.
local start = ‘win’+‘ar’

quietly summ ‘varlist’, meanonly

local last = r(N)

dis _n "‘vol’: volatility forecast for ‘varlist’ with
window=‘win’, AR(‘ar’)"

(continues...)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 114/132

Examples of Stata programming Writing an ado-file

forv i=‘start’/‘last’ {
local first = ‘i’-‘win’+1
quietly regress ‘varlist’ L(1/‘ar’).‘varlist’ ///
in “irst’/ ‘i’
quietly replace ‘vol’ = e(rmse) in ‘i’ /i’
}
exit
end

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 115/132

Examples of Stata programming Writing an ado-file

This program defines the vol fc command, which will appear like any
other Stata command on your machine. It may be executed as

use http://fmwww.bc.edu/ec-p/data/macro/bdh, clear
volfc pcrude, vol (vv)

volfc pcrude, vol(vv24) win(24)

volfc pcrude, vol(vv126) ar(6)

volfc pcrude, vol(vv248) win(24) ar(8)

The volatility series might then be graphed (presuming a time variable
date which is the variable that has been tsset) with

tsline vv vv24 vvl1l26 vv248 if tin(1983qgl,),
ti(Volatility forecasts for Pcrude)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 116/132

Examples of Stata programming Writing an ado-file

Volatility forecasts for Pcrude

© 4
w
< 4
o 4
I T T T T T

198393 198793 199193 199593 199993

date
v w24
— w126 w248

sTara™

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 117/132

Examples of Stata programming Writing an ado-file

This illustrates the relative simplicity of developing a quite general tool
in Stata’s programming language. Although you may use Stata without
ever authoring an “ado-file”, much of the productivity enhancement that
a Stata user may enjoy is likely to be tied to this sort of development.
Many research tasks are quite repetitive in some context, and
developing a general-purpose tool to implement that repetition is likely
to be a very good investment in terms of time and effort.

Many of the modules available from the SSC Archive were first
conceived by individuals looking to ease the burden of their own work.
Stata’s unique extensibility makes it trivial to incorporate user-written
additions—including those which you author—into your copy of Stata,
and to share it with collaborators or the Stata user community if
desired.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 118/132

Examples of Stata programming Details of program construction

As should be evident from this programming example, the program
define command is used to declare a program. The program name
must match the name of the ado-file in which it is stored. Most
user-written programs are r-class. This program could be modified to
return its parameters to the calling program with the return statement:

return local vol ‘vol’
return local win ‘win’
return local ar ‘ar’
return local first ‘start’
return local last ‘last’

With these statements added to the end of the routine, the local
macros are defined, and their values stored.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 119/132

Examples of Stata programming Details of program construction

The second element to be noted is the syntax statement, which
defines the allowable syntax for a user-written command. One may
specify that the command allows a single variable, with varname; a
set of variables, with varlist, optionally specifying how many are
allowed. For instance, a statistical technique that operates on a pair of
variables could specify that exactly two existing variables are to be
provided. Likewise, one may specify that a new variable (or set of
variables) are the newvarlist of the command, and syntax will check
that they are indeed new variables.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 120/132

Examples of Stata programming Details of program construction

The second element to be noted is the syntax statement, which
defines the allowable syntax for a user-written command. One may
specify that the command allows a single variable, with varname; a
set of variables, with varlist, optionally specifying how many are
allowed. For instance, a statistical technique that operates on a pair of
variables could specify that exactly two existing variables are to be
provided. Likewise, one may specify that a new variable (or set of
variables) are the newvarlist of the command, and syntax will check
that they are indeed new variables.

Although not illustrated above, the syntax command will often specify
that i £ and in clauses are optional elements. Optional elements of
syntax (such as the options Win and AR above) are placed in brackets

([D-

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 120/132

Examples of Stata programming Details of program construction

This programming example illustrates a “required option"—the vol
option, which must be used on this command to specify the output of
the command. The other two options are indeed optional, and take on
default values if they are not specified. The argument of the vol option
is meant to be a new variable name; that will be trapped when the
generate statement attempts to create the variable if it is already in
use, or is not a valid variable name.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 121/132

Examples of Stata programming Details of program construction

This programming example illustrates a “required option"—the vol
option, which must be used on this command to specify the output of
the command. The other two options are indeed optional, and take on
default values if they are not specified. The argument of the vol option
is meant to be a new variable name; that will be trapped when the
generate statement attempts to create the variable if it is already in
use, or is not a valid variable name.

Most user-written programs could be improved by adding code to trap
errors in users’ input. If the program is primarily for your own use, you
may eschew extensive development of error trapping: for instance,
checking the options for sensibility (although one test is applied here to
prevent nonsensical results).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 121/132

Examples of Stata programming Details of program construction

Local macros are exactly that: objects with local scope, defined within
the program in which they are used, disappearing when that program
terminates. This is generally the desired outcome, preventing a clutter
of objects from being retained when a program calls numerous others
in the course of execution. At times, though, it is necessary to have
objects that can be passed from one subprogram to another. The
return logic above would not really serve, since although it passes
local macros from a program to its caller, they would then have to be
passed as arguments to a second program.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 122/132

Examples of Stata programming Details of program construction

Local macros are exactly that: objects with local scope, defined within
the program in which they are used, disappearing when that program
terminates. This is generally the desired outcome, preventing a clutter
of objects from being retained when a program calls numerous others
in the course of execution. At times, though, it is necessary to have
objects that can be passed from one subprogram to another. The
return logic above would not really serve, since although it passes
local macros from a program to its caller, they would then have to be
passed as arguments to a second program.

To deal with the need for persistent objects, Stata contains global
macros. These objects, once defined, live for the duration of your Stata
session, and may be read or written within any Stata program. They
are defined with the global command, rather than 1ocal, and
referred to as Smacroname. Global macros should only be used
where they are required.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 122/132

Examples of Stata programming Example of programming for panel data

We now present an example of a Stata program that operates on
panel, or longitudinal data. When you use panel data, you must use
the panel data form of t sset in which both a unit variable and a time
variable are specified.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 123/132

Examples of Stata programming Example of programming for panel data

We now present an example of a Stata program that operates on
panel, or longitudinal data. When you use panel data, you must use
the panel data form of t sset in which both a unit variable and a time
variable are specified.

Assume that you have a panel data set, properly identified as such,
containing several time series for each unit in the panel: for instance,
investment or population measures for several countries. We would
like to generate a new series containing the deviations from a constant
growth path (exponential trend) or, alternatively, the constant growth
values themselves (the predicted values from the exponential trend
line).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 123/132

Examples of Stata programming Example of programming for panel data

This program, pangrodev, performs this task for each unit of a panel,
automatically identifying the observations belonging to each unit,
taking the logarithm of the specified variable, running the appropriate
regression and prediction commands, and assembling the results in
the specified new variable.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 124 /132

Examples of Stata programming Example of programming for panel data

This program, pangrodev, performs this task for each unit of a panel,
automatically identifying the observations belonging to each unit,
taking the logarithm of the specified variable, running the appropriate
regression and prediction commands, and assembling the results in
the specified new variable.

The program makes use of Stata’s tempname and tempvar
commands to create non-scalar objects (in this case the matrix vv and
variables 1var and pvar which, like local macros, will exist only for
the duration of the ado-file). These temporary facilities, like the
associated tempfile which allows temporary files to be specified,
help reduce clutter and guarantee that objects’ names will not conflict
with other items in the user's namespace.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 124 /132

Examples of Stata programming Example of programming for panel data

x! pangrodev 1.1.0 CFBaum 21Jan2006
* generate deviations from constant growth in panel
* 1.1.0: promote to v9, use levelsof

program define pangrodev, rclass

version 10.0

syntax varname, Gen (string) [xb]

local togens "deviations from constant growth”
if "Yxbr"m o= m"m"

local togens "predicted growth"

}

qui tsset

local ivar = r (panelvar)

local timevar = r(timevar)

tempname VV

tempvar lvar pvar

(continues...)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 125/132

Examples of Stata programming Example of programming for panel data

qui gen double ‘lvar’ = log(‘varlist’)
* get list of units

qui levelsof ‘ivar’, local (vals)

local nvals: word count ‘vals’

qui gen double ‘gen’=.

local xc 0

local tbar O

local rsqgr O

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 126/132

Examples of Stata programming Example of programming for panel data

foreach v of local vals {

summ ‘lvar’ 1if ‘ivar’==‘v’,meanonly

if r(N)>2 {

qui regress ‘lvar’ ‘timevar’ if ‘ivar’==‘v’
capt drop ‘pvar’

qui predict double ‘pvar’ if e (sample),xb

qui replace ‘gen’ = exp(‘pvar’) if e(sample)

if "Yxb/" o=="" {

qui replace ‘gen’ = ‘varlist’-‘gen’ if e (sample)
}

local xc = '‘xc’ + 1

local tbar = ‘tbar’ + e (N)
local rsqr ‘rsqgr’ + e(r2)
}

}

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 127/132

Examples of Stata programming Example of programming for panel data

local tbar
local rsqr
di in gr

int (100 ‘tbar’ / ‘xc’)/100.0

int (1000« ‘rsqgr’ / ‘xc’)/1000.0

n "‘gen’ : ‘togens’ for ‘xc’ of " ///
"‘nvals’ units"

di in gr "tbar = ‘tbar’ rsgq-bar = ‘rsqgr’"

exit
end

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 128/132

Examples of Stata programming Example of programming for panel data

This program defines the pangrodev command, which will appear like
any other Stata command on your machine. It may be executed as

use http://fmwww.bc.edu/ec-p/data/macro/cap797wa
(World Bank Database for Sectoral Investment, 1948-19¢
pangrodev TotSECap, g (totcapdev)

totcapdev : deviations from constant growth for
57 of 63 units
tbar = 25.94 rsq-bar = .673

pangrodev TotSECap, g(totcaphat) xb
(output omitted)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 129/132

Examples of Stata programming Example of programming for panel data

Selected series computed by pangrodev can now be graphed by the
tsline command, which accepts a by (varlist) option:

replace totcapdev=totcapdev/10"9

keep if (ccode=="ARG" | ccode=="CHL" | ccode=="COL" |
ccode=="PER" | ccode=="URY" | ccode=="VEN")

label var totcapdev "Deviations from capital accum"
label var ccode "South American country"”

tsline totcapdev if year>1969, by (ccode)

will demonstrate how many countries followed the same pattern of
below-trend growth of the capital stock (curtailed investment) during
the 1980s.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 130/132

Examples of Stata programming Example of programming for panel data

ARG CHL coL
o
s |
fe
£ of —_ T—_
[+
=
£ 8
(8] '
Q
85
S]
g PER URY VEN
£ 3.
g2
12}
c
6 o W -
=]
&
3 S|
(S
o
o
§

T T T T T T T T T T T T T T T
1970 1975 1980 1985 1990 1970 1975 1980 1985 1990 1970 1975 1980 1985 1990
year

Graphs by South American country

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 131/132

Examples of Stata programming Concluding remarks

Whether or not you use Stata’s programming facilities to write your
own ado-files, a “reading knowledge” of the programming language is
very useful in case you want to adapt an existing Stata command
(official or user-contributed) in a do-file you are writing.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 132/132

Examples of Stata programming Concluding remarks

Whether or not you use Stata’s programming facilities to write your
own ado-files, a “reading knowledge” of the programming language is
very useful in case you want to adapt an existing Stata command
(official or user-contributed) in a do-file you are writing.

Since the code for all Stata commands that are implemented as
ado-files (as the command which. .. will show) are available on your
hard disk, Stata itself is a fertile source of programming techniques
that may be adapted to solve any programming problem.

For a thorough treatment of the subject, see my book An Introduction
to Stata Programming (2009) in O’Neill Library.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2009 132/132

	Strengths of Stata
	What is Stata?
	Portability
	Data Manipulation
	Statistics
	Graphics
	Availability, Cost, and Support
	Update Facility

	Working with the command line
	Advantage: Reproducibility
	Advantage: Extensibility
	Stata Journal and SSC Archive
	Advantage: Transportability

	Command Syntax
	Command template
	The varlist
	The exp clause
	The if and in clauses
	The using clause
	Accessing data over the Web
	The options clause
	Prefix commands
	Missing values
	Display formats
	Variable labels
	Value labels

	Generating new variables
	The egen command
	Time series operators
	Mata: Matrix programming language

	Estimation commands
	Common syntax
	Post-estimation commands
	Storing and retrieving estimates
	Publication-quality tables

	File handling
	 Loading external data: insheet
	 Loading external data: infile
	Loading external data: infix
	Loading external data: Stat/Transfer

	Combining data sets
	append
	merge
	Match merge

	 Writing external data
	outfile, outsheet and file
	postfile and post

	Reconfiguring data
	 collapse
	reshape

	Repeating commands
	foreach and forvalues
	while and if

	Local macros, scalars and results
	return list, ereturn list

	Useful commands and Stata examples
	Useful commands
	Data manipulation
	Statistics
	Limited dependent variable estimation
	Time series estimation
	Panel data estimation
	Nonlinear estimation
	Graphics
	Instructional data sets
	Cross-section example
	Time series example

	Examples of Stata programming
	Writing a do-file
	Writing an ado-file
	Details of program construction
	Example of programming for panel data
	Concluding remarks

